首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12141篇
  免费   3104篇
  国内免费   2630篇
测绘学   388篇
大气科学   1714篇
地球物理   4024篇
地质学   6876篇
海洋学   1082篇
天文学   92篇
综合类   1264篇
自然地理   2435篇
  2024年   37篇
  2023年   214篇
  2022年   433篇
  2021年   485篇
  2020年   441篇
  2019年   529篇
  2018年   475篇
  2017年   553篇
  2016年   560篇
  2015年   609篇
  2014年   773篇
  2013年   772篇
  2012年   870篇
  2011年   855篇
  2010年   778篇
  2009年   811篇
  2008年   778篇
  2007年   880篇
  2006年   857篇
  2005年   717篇
  2004年   639篇
  2003年   564篇
  2002年   520篇
  2001年   514篇
  2000年   466篇
  1999年   441篇
  1998年   436篇
  1997年   346篇
  1996年   284篇
  1995年   248篇
  1994年   210篇
  1993年   210篇
  1992年   170篇
  1991年   94篇
  1990年   85篇
  1989年   57篇
  1988年   49篇
  1987年   27篇
  1986年   15篇
  1985年   17篇
  1984年   9篇
  1983年   1篇
  1982年   3篇
  1981年   4篇
  1980年   9篇
  1979年   4篇
  1978年   11篇
  1977年   13篇
  1976年   1篇
  1954年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
采用三维荧光光谱-平行因子法(EEMs-PARAFAC)分析太湖五里湖水体悬浮物中水溶性有机质(WSOM)的荧光光谱特征,研究其组分类型、分布规律以及来源,进一步探讨悬浮物中水溶性有机氮和无机氮含量与WSOM荧光组分之间的关系.结果表明,悬浮物中WSOM荧光组分主要由2个类腐殖质(C1、C2)和1个类色氨酸类蛋白质(C3)组成.总荧光强度在57.56~200.01 R.U./g之间,平均为115.42 R.U./g,其中C1、C2、C3的相对比例分别为35.55%、34.05%和30.40%;空间上由西向东逐渐增强,东五里湖高于西五里湖,沿岸区高于湖心区.荧光指数和生物源指数变化范围分别在1.48~2.34和0.65~0.87之间,反映了悬浮物中WSOM主要来源于微生物、藻类的自生生物源.多元回归统计分析结果表明,悬浮物WSOM与氮元素的迁移转化密切相关,且有机氮与WSOM荧光组分的相关系数大于无机氮.  相似文献   
52.
鄱阳湖水龄季节性变化特征   总被引:3,自引:1,他引:2  
基于环境水动力学模型EFDC源程序,建立了染色剂模型和水龄模型,在将模型与航测水文数据验证吻合的基础上,分别计算了鄱阳湖自然条件下春、夏、秋、冬季的水龄和倒灌前后鄱阳湖染色剂和水龄分布的变化,以及五河水系各分支河流水龄.分季节的水龄计算表明鄱阳湖水体交换受季节性来水影响明显.夏、秋季的水龄相对较小,在多数年份又受到长江水倒灌的影响导致水龄有所增大;冬、春季水龄较大,亦无长江水倒灌现象,相较于夏、秋季,水域面积明显减少.分支流的水龄计算表明,西南湖区的水体交换主要受到赣江的影响,西北湖区水体交换主要受到修水和赣江的影响,南部湖区主要受到抚河与信江的影响,东部湖区主要受到饶河的影响,湖心区和入江水道则受到五河水系的综合影响.同时水龄的研究表明拟建的鄱阳湖水利枢纽工程"调枯不调洪"的原则是合理的,为鄱阳湖水利枢纽工程论证提供了重要的参考依据.  相似文献   
53.
以呼伦湖流域为例研究该区域氢氧稳定同位素在不同水体中的分布特征,并探讨氢氧稳定同位素对在该区域水文过程的指示作用.流域湖水、入湖河水、周边地下水水样的氢氧稳定同位素分析结果表明,夏季8月份湖水中的重氢氧稳定同位素比7月份的更加富集.而河水中氢氧稳定同位素在同一时间内的河流沿程上存在明显的差异,下游水体中的氢氧稳定同位素要比上游更加富集.研究区的河水和湖水的δ~(18)O-δD关系特征显示,河水和湖水的δ~(18)O-δD的关系点全部位于当地降水线的右下方,说明流域河水和湖水水体受到明显的蒸发作用.而井水的δ~(18)O-δD的关系点大都靠近当地大气降水线,说明这一区域的地下水主要是大气降水渗入地下形成.利用氢氧稳定同位素分馏过程中的氢氧稳定同位素的比率与剩余水体的关系,并在考虑湿度因子的动力分馏模拟下,计算出河水的剩余水体比例在0.85~0.96之间,而湖水的剩余水体比例在0.71~0.77之间.最后,利用氢氧稳定同位素质量平衡法对呼伦湖多年平均蒸发量进行了估算,估算的湖泊蒸发量结果与实测值相近,相对误差为5.4%,说明方法可靠.氢氧稳定同位素对于研究区域水文过程有着重要的作用,在今后呼伦湖流域水文研究中有着更加广泛的应用空间.  相似文献   
54.
昆特依干盐湖位于柴达木盆地西北部,为特大型综合盐类矿床.大盐滩是昆特依干盐湖内最大的盐滩,地下赋存有一定量的卤水矿床,但该矿床的水文地质条件差,主要卤水矿层含水性弱,开采难度大.核磁共振找水方法作为当今世界上唯一的直接找水地球物理新方法,具有高分辨力、高效率、信息量丰富和解的唯一性等优点,本文运用该方法对昆特依干盐滩地区地下卤水空间分布特征进行研究,通过对核磁共振数据进行处理与反演,结合已有的地质与钻井资料,对测点进行综合地质-地球物理解释,获得以下认识:1)大盐滩0~130 m深度范围内,共存在3个卤水含水层,主要呈扁平状或漏斗状、近似层状展布,W1为晶间潜卤水层,渗透系数较大,颗粒较粗,单位体积含水量为0.4%~2.7%,W2和W3为晶间承压卤水层,渗透系数较小,颗粒较粗,单位体积含水量分别为0.2%~1.1%和0.1%~0.8%;2)大盐滩地区存在两个卤水富集区,分别为研究区西南部沉积盆地中心的Ⅰ号富卤区和盆地东北部的Ⅱ号富卤区;3)根据区域内卤水富集分布以及构造情况,划定大盐滩向斜沉积中心、大盐滩北侧F1~F8及遥F6断裂发育区和冷湖构造带为区域内主要的找矿找水远景区;4)GMR核磁共振系统在干盐滩地区理论探测深度为130 m,该系统不仅可以有效地探测自由水,而且可以依据束缚水的分布解译地下各类含水盐类矿物和含水黏土矿物的存在与分布.  相似文献   
55.
张风菊  薛滨  姚书春 《湖泊科学》2018,30(1):234-244
通过对内蒙古高原呼伦湖沉积物样品总有机碳含量(TOC)及其稳定同位素(δ13Corg)、总氮含量(TN)和TOC/TN(C/N)值的测定,结合沉积岩芯AMS14C年代标尺,分析了中全新世以来呼伦湖沉积物有机碳埋藏速率随时间变化的趋势及有机质的来源,并探讨了影响呼伦湖有机碳埋藏的主要因素.结果表明,中全新世以来呼伦湖有机碳埋藏速率平均值约为2.06 g/(m~2·a),碳储量约为35.25 Tg C,且总体上呈现增加趋势.呼伦湖沉积物中有机质主要来源于外源输入,但近1000 a以来内源输入逐渐增加并占据优势.呼伦湖有机碳埋藏速率与温度和降水均呈负相关,表明在长时间尺度上,升温及降水量的增加可能对呼伦湖的碳埋藏起到一定的抑制作用.  相似文献   
56.
自2007年太湖蓝藻水华引起无锡供水危机后,在太湖流域及湖区开展了一系列综合治理措施以改善太湖水环境质量.本研究在太湖梅梁湾和贡湖湾各设置3个采样点,自2010年4月起每月2次监测太湖水质.结合水文气象数据及无锡市环境监测站和太湖局的同期数据,明确太湖自2010年以来,水质整体良好,总氮浓度在波动中呈现下降的趋势,总磷浓度在2014年前也是在波动中呈现下降的趋势,但在2015和2016年有所回升,回升比例约为15%~20%.2015和2016年总磷浓度出现回升的主要原因是这2年的2次大洪水过程携带大量N、P进入太湖湖区,洪水消退过程中,N大多以溶解态排泄出湖区,而P则由于大多数以颗粒态存在,逐渐沉积到湖泊中,随着微囊藻生长消耗水体溶解态P以及水体pH和溶解氧的变化逐渐释放到太湖水体中.  相似文献   
57.
滇池沉水植物生长过程对间隙水氮、磷时空变化的影响   总被引:4,自引:0,他引:4  
2015年6-10月通过原位采集滇池沉水植物分布区和无植物对照区柱状沉积物间隙水,分析其溶解性总氮(DTN)和溶解性总磷(DTP)、溶解性无机氮(DIN)和溶解性无机磷(DIP)及溶解性有机氮(DON)和溶解性有机磷(DOP)浓度的时空变化,探讨沉水植物分布对间隙水氮、磷浓度、形态贡献及氮磷比的影响.结果表明:滇池沉水植物生长过程显著影响间隙水氮、磷浓度.与无植物对照区相比,沉水植物生长过程对间隙水氮浓度的削减主要发生在6、8月,而对间隙水磷浓度的削减主要发生在7月,反映了沉水植物对氮、磷两种元素的生物地球化学循环作用机制不同;间隙水氮形态贡献受季节性影响较大,6-7月以DON贡献为主,沉水植物分布区和无植物对照区分别达到61%和84%;而8-10月以DIN贡献为主,沉水植物分布区和无植物对照区分别为76%和75%;沉水植物分布区磷形态贡献随季节波动变化,沉水植物分布区以DOP贡献为主(63%),无植物对照区以DIP贡献为主(62%);沉水植物生长对沉积物间隙水各形态氮磷比影响显著.沉水植物生长显著增加间隙水DTN/DTP比,尤其是DIN/DIP比,相反降低DON/DOP比.沉水植物对间隙水氮、磷吸收及转化过程改变了沉积物氮、磷释放机制,从而影响上覆水氮、磷组成及氮磷比,很可能会影响到浮游植物生长及藻类水华过程,这对于湖泊水质管理具有重要意义.  相似文献   
58.
溯河洄游长江刀鲚(Coilia nasus)摄食虾类的调查   总被引:4,自引:0,他引:4  
姜涛  刘洪波  李孟孟  杨健 《湖泊科学》2018,30(2):458-463
刀鲚(Coilia nasus)是长江的名贵经济鱼类.虽然传统上认为其溯河生殖洄游全过程不会摄食,但该问题一直尚未完全弄清.作为有效解明这一问题的第一步,本研究在前期长江流域干流和湖泊刀鲚资源调查的基础上,先利用耳石微化学技术筛选出长江河口区、江苏江段、安徽江段和鄱阳湖水域溯河洄游型的刀鲚个体,再对其胃、肠容物的大型游泳动物(鱼、虾类)进行调查分析.结果发现,在河口区、江苏和安徽江段所有刀鲚个体胃充塞度为0级,均未发现摄食有游泳动物;而鄱阳湖水域刀鲚个体的胃充塞度达4~5级,均发现有摄食淡水虾类的日本沼虾(Macrobrachium nipponense)和秀丽白虾(Exopalaemon modestus)的情况.其中29%和71%的刀鲚胃中分别含有1只和2只虾.所有刀鲚个体肠内均未发现有内容物.鉴于鄱阳湖已被确定为溯河洄游型刀鲚的产卵场之一,结果表明长江刀鲚在经河口,通过长江江苏和安徽江段干流到达鄱阳湖产卵场的过程中应该不会摄食大型游泳动物;而进入鄱阳湖产卵场后会开始摄食日本沼虾和秀丽白虾.这种两阶段的现象可能反映出了刀鲚的一种在洄游通道上节约能量,以利长距离溯河;而在产卵场补充能量,以利于性腺最终成熟的生存策略.  相似文献   
59.
海陆颜色仪(OLCI)是搭载在Sentinel-3上的新型水色遥感传感器,其对于内陆清洁水体水质遥感监测的适用性有待验证.本研究以评价水体富营养化程度的重要参数叶绿素a(Chl.a)浓度为指标,以高原湖泊洱海为研究区,基于2017年4月19日共20个星地同步实验数据,建立了3种可应用于OLCI数据的Chl.a浓度遥感估算模型(波段比值模型、三波段模型以及FLH模型),并估算了当日洱海Chl.a浓度的空间分布.结果表明:(1)选用波段Oa8(665 nm)、Oa11(708.75 nm)和Oa12(753.75 nm)构建的三波段模型最适用于洱海水域的Chl.a浓度估算,其平均绝对误差百分比为12.37%,低于波段比值模型的16.04%和FLH模型的13.50%;(2)对OLCI使用的大气校正方法中,基于去瑞利散射的暗像元法对估算模型的适用性要优于6S、FLAASH以及QUAC方法;(3)洱海OLCI影像中近岸水体受邻近效应影响严重,近红外波段Oa12(753.75 nm)受陆地邻近效应影响的距离为1~2个像元,而Oa8(665 nm)、Oa10(681.25 nm)和Oa11(708.75 nm)波段为1个像元;(4)2017年4月19日全湖Chl.a浓度均值为12.15±5.72μg/L,洱海中部水域Chl.a浓度最低(9.00~12.00μg/L),北部水域浓度最高(12.00~22.76μg/L),南部水域浓度稍高(12.00~14.00μg/L),阳南溪与波罗江入湖口受降雨径流的影响出现"羽流现象",导致Chl.a浓度偏低,约为8.33μg/L.  相似文献   
60.
若干水华相关藻类对太湖水体异味物质贡献的初步研究   总被引:1,自引:0,他引:1  
太湖水体中嗅味物质2-甲基异莰醇(MIB)和土臭素(Geo)的出现与水华发生在时间上高度重叠,为探寻水华中常见藻类与嗅味的关系,本研究通过对实验室培养藻株和野外水样比较分析,探寻了部分藻株与太湖水体嗅味物质的关系.分析实验室培养的15株蓝藻(其中11株微囊藻)、4株绿藻和4株硅藻,仅硅藻培养物测定出了Geo,所有藻株均未检测出MIB;对太湖典型水样分析结果显示,水体中MIB与Geo的浓度与微囊藻细胞浓度无相关性;实验室模拟微囊藻水华腐败结果显示,无论是好氧还是厌氧条件下均未产生MIB和Geo;这些数据结果说明湖水中MIB和Geo与水华主要种群微囊藻无直接关系.在鱼腥藻水华中测出了高浓度的MIB,周年水样分析结果显示鱼腥藻细胞数与MIB浓度变化规律一致,因此鱼腥藻可能是MIB的重要来源.但实验室培养的Anabaena sp.PCC7120无论是在缺氮还是有氮培养条件下均不产MIB和Geo,说明嗅味物质的产生具有藻株特异性.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号